首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24060篇
  免费   2010篇
  国内免费   1734篇
生物科学   27804篇
  2024年   58篇
  2023年   555篇
  2022年   483篇
  2021年   947篇
  2020年   1034篇
  2019年   1225篇
  2018年   1025篇
  2017年   926篇
  2016年   932篇
  2015年   1175篇
  2014年   1454篇
  2013年   2219篇
  2012年   1022篇
  2011年   1185篇
  2010年   819篇
  2009年   1275篇
  2008年   1326篇
  2007年   1308篇
  2006年   1200篇
  2005年   969篇
  2004年   901篇
  2003年   757篇
  2002年   628篇
  2001年   518篇
  2000年   442篇
  1999年   398篇
  1998年   391篇
  1997年   396篇
  1996年   277篇
  1995年   259篇
  1994年   225篇
  1993年   228篇
  1992年   187篇
  1991年   164篇
  1990年   145篇
  1989年   113篇
  1988年   99篇
  1987年   87篇
  1986年   76篇
  1985年   90篇
  1984年   60篇
  1983年   34篇
  1982年   58篇
  1981年   47篇
  1980年   31篇
  1979年   21篇
  1978年   11篇
  1977年   8篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Adaptation to salinity at the plant cell level   总被引:3,自引:0,他引:3  
Summary Various mechanisms of adaptation of plant cells to salinity are reviewed: (1) protection of enzymes and maintenance of turgor by organic solutes; (2) prevention of ion toxicity by compartmentation; and (3) energization of solute transport by the proton pump. All these mechanisms seem to play a role in adaptation. The particular advantages of using salt-adapted cells in suspension culture to identify mechanisms of adaptation are pointed out.  相似文献   
52.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   
53.
Survival times of metamorphosing leptocephali of the bonefish Albula sp. placed in hypoxic sea water (0·68 mg O2 l-1) decreased by about three-fold (from c. 15 to 5 min) over the 10 day metamorphic period. Increased sensitivity to hypoxia coincided with increased larval oxygen demand during metamorphosis. Plots of hypoxic survival time against standard length or wet mass suggested that metamorphosis (phase II of larval development) could be divided into subphases (IIa and IIb). American Public Health Association.  相似文献   
54.
Flooding results in induction of anaerobic metabolism in many higher plants. As an important component of anaerobic energy production, alcohol dehydrogenase (ADH) activity increases markedly in response to flooding in white clover, Trifolium repens. Significant inter-individual variation in flood-induced ADH activity exists in natural populations of T. repens. The genetic basis of this variation was analyzed by offspring-midparent regression of data from 75 greenhouse reared families; the estimated heritability of flood-induced ADH activity was 0.55 (±0.13). Genetic variation in flood-induced ADH activity has pronounced effects on physiological response and flood tolerance in this species. ADH activity is positively correlated with the rate of ethanol production, indicating that observed in vitro activity differences are manifested in in vivo physiological function. T. repens plants with higher ADH activities during flooding have greater flood tolerance (measured as growth rate when flooded/unflooded growth rate). Variation in ADH activity during flooding accounts for more than 79% of the variance in flood tolerance. On the basis of a limited field survey of populations occupying three sites differing in exposure to flooding conditions, individuals from site C, the most frequently flooded site, expressed significantly higher average ADH activity when flooded than individuals from site A, a site with no history of flooding. Since ADH activity levels are not correlated with electrophoretic mobility variation in T. repens, this work supports previous suggestions that regulatory variation in enzyme activity may play a central role in biochemical adaptations to environmental stress.  相似文献   
55.
1. When dissolved oxygen levels decline in aquatic systems, prey may be unable to maintain behaviours protecting them from predators. We examined how oxygen availability affected anti‐predator responses in the freshwater clam, Corbicula fluminea. 2. When attacked, bivalves protect their soft tissues by closing their protective valves. This reduces vulnerability to small predators, but ventilation and oxygen uptake are suspended. We found that after a simulated attack, clams under low oxygen conditions reopened their valves sooner than clams under high oxygen conditions, suggesting that hypoxia increases vulnerability to predation. 3. Bivalves may also evade predators through burial into the substratum. Deeper burial confers greater refuge from predators, but increases the costs of ventilation. In a second experiment, we studied how burial depth of C. fluminea is affected by oxygen availability. Additionally, we examined whether clams changed burial depth following a simulated attack by a small predator, and whether this response was affected by oxygen availability. Our results offered partial support for the hypothesis that burial depth is reduced under hypoxic conditions, but the simulated attack did not affect burial depth in any oxygen treatments.  相似文献   
56.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   
57.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
58.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   
59.
The plant growth regulators, gibberellic acid (GA3), ethephon and chlormequat chloride (CCC) were sprayed on young lettuce, cauliflower and bean (Phaseolus vulgaris) plants, which had either been given or not been given a mechanically-induced stress (MIS) treatment. MIS was applied by brushing the plants with paper for 1.5 minutes each day. GA3 increased extension growth of bean and leaf length of lettuce in unbrushed plants as much as in brushed ones. CCC and ethephon were less effective at reducing the height of brushed bean plants compared to unbrushed ones. The effects of CCC on the growth of cauliflower and lettuce plants was not influenced by brushing, whereas unbrushed plants responded more readily to ethephon than did brushed ones. The effects of CCC on growth were generally similar to those of MIS whereas the effects of ethephon were in many ways different to MIS.The results are discussed in relation to the use of PGR and MIS treatments for modifying plant growth.  相似文献   
60.
G. Gay  C. Kerhoas  C. Dumas 《Planta》1987,171(1):82-87
The quality of Cucurbita pepo L. pollen was studied using field pollinations and the fluorochromatic-reaction test. The extreme sensitivity of this pollen to dehydration and ageing is demonstrated. Controlled stress applied to mature pollen leads to the development of seedless fruits. Molecular signals seem to be involved in the induction of this parthenocarpy. These results indicate the existence of distinct sequences involved in the completion of the fertilization program of pollen. With pollen altered by stress, the fertilization process may be stopped at different stages of its completion. We bring evidence that Cucurbita pepo plants have developed special adaptations in order to compensate for the poor viability of their pollen.Abbreviation FCR fluorochromatic reaction  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号